

Shreyas Bachiraju

+1(602)880-1583 • shreyasbachiraju24@gmail.com • [Homepage](#) • [LinkedIn](#) • [Google Scholar](#) • [GitHub](#)

Education

Bachelor of Science in Informatics

May 2026

Arizona State University | **GPA:** 3.97

Awards:

- New American University Scholar (merit-based, \$14.5k/yr), Dean's List (all semesters)
- Honorable Mention – 2025-26 CRA Outstanding Undergraduate Award
- 1st Place Winner HackHarvard 2024 (Sustainability Track), 1st Place Winner of Ethical Spectacle Research Sustainability Hackathon, Fulton Undergraduate Initiative Research Scholar (stipend, \$1.5k)

Leadership:

- Founding Co-President of CS + Social Good at ASU; led and organized a 200+ member student organization
- Undergraduate Teaching Assistant for Advanced Object-Oriented Programming in Java

Publications

Turnau, J., Da, L., Vo, K., Al Rafi, F., **Bachiraju, S.**, Chen, T., & Wei, H. (2025). [Joint-Local Grounded Action Transformation for Sim-to-Real Transfer in Multi-Agent Traffic Control](#). Reinforcement Learning Journal, 6, 2271–2290. (Presented at RLC 2025)

Da, L., Chen, T., Li, Z., **Bachiraju, S.**, Yao, H., Li, L., Dong, Y., ... Wei, H. (2025). [Generative AI in Transportation Planning: A Survey](#). arXiv:2503.07158. (Under journal revision)

Research Experience

Note: Underlined text in blue is hyperlinked.

Research Intern

September 2024 – Present

Data Mining and Reinforcement Learning Lab at Arizona State University

Dataset Distillation for Resource-Constrained Reinforcement Learning

- Designed a dataset-distillation method to replace RL training runs with a compact synthetic dataset, compressing a 100K-step PPO trajectory into 50 optimized states while preserving the expert policy's learning dynamics.
- Implemented a bi-level gradient-through-gradient meta-learning pipeline in PyTorch (using higher) to optimize synthetic states via KL-based policy matching and parameter-trajectory alignment.
- Achieved 96% expert performance retention using policy distillation and 84% using behavior cloning when training student policies on distilled data; extending the method to more environments.

[Generative AI in Transportation Planning: A Survey](#) | Preprint

- Led a case study on optimizing Origin-Destination (OD) Matrices using LLMs, improving traffic flow prediction accuracy and convergence stability.
- Designed domain-aware heuristics with contextualized Chain-of-Thought prompting (Llama and HuggingFace Transformers) that focused updates on top-K high-error links, improving MSE convergence and stability.
- Collaborated with civil engineers to encode planning constraints into the prompt and evaluation pipeline, and contributed to figure design, experimental setup, and result analysis.

[Compression of Deep Neural Networks for Edge Devices](#) | Poster Presentation: Fulton Forge Research Expo (2025)

- Led a project through the Fulton Undergraduate Research Initiative on compressing and deploying depth-estimation models for real-time inference on resource-constrained Jetson Nano hardware.
- Built an end-to-end deployment pipeline using PyTorch, ONNX, and TensorRT, implementing mixed-precision quantization to improve inference efficiency.
- Diagnosed and resolved ONNX–TensorRT compatibility issues by redesigning the model's encoder-decoder architecture with supported convolutional operations while maintaining model accuracy.
- Achieved 33% lower latency, 42% smaller model size, and 50% higher throughput, retaining 99% of baseline accuracy during on-device inference.

[JLGAT for Sim-to-Real Transfer in Multi-Agent Traffic Control](#) | Reinforcement Learning Conference 2025

- Executed controlled experiments comparing centralized, decentralized, and JL-GAT policies under varying weather conditions and across 1x3 and 4x4 traffic networks.

Energy-Efficient Inference in Mixture-of-Experts (MoE) Large Language Models

- Profiled Mixtral-8×7B MoE model on GPU–CPU systems using NVML, RAPL, and CUDA instrumentation to measure power, latency, and host-device transfer overheads.
- Implemented a thread-safe expert-swapping pipeline with explicit GPU memory management, pinned-host transfers, and CUDA stream scheduling.
- Identified memory swapping as the primary bottleneck, responsible for ~60% of energy use and inference time.
- Built a cost lookup table (LUT) that profiles expert-level throughput, latency, residency, and GPU/CPU thermal-energy costs to support optimized MoE routing and scheduling.
- Proposed an energy- and residency-aware routing policy that predicts subsequent expert activations and conditionally prefetches non-resident experts into GPU memory.

Experience**AI/ML Intern**

May 2024 – July 2024

Netradyne

- Benchmarked state-of-the-art (SOTA) depth estimation models for Time to Collision (TTC) estimation with forward vehicles for Advanced Driver Assistance Systems (ADAS) using PyTorch.
- Developed an end-to-end automated pipeline using Python and AWS S3 to extract and process 30,000+ dashcam videos and execute model inference, thereby reducing total processing time by 90%.
- Improved the model's per-sample inference time by 25% through batch inference and implemented TTC pipelines.
- Reduced Absolute Relative Error by 15% through hyperparameter tuning and lab experiments; generated depth maps for 280,000+ images to support training of a YOLOv5-based depth prediction model.

Software Engineer Intern

June 2023 – July 2023

Clocr Inc.

- Integrated OpenAI's GPT API into My-Legacy.ai, an estate planning chatbot, to enhance conversational accuracy and domain-specific reliability.
- Decreased LLM hallucinations by 20% through fine-tuning and retrieval-augmented generation (RAG) pipelines built with custom legal knowledge bases.
- Led data-driven A/B testing iterations and user feedback analysis to enhance chatbot's personalized recommendations; projected a 40% increase in user satisfaction based on user experience trials.

Projects**U-Plan - HackHarvard 2024 Winner in Sustainability Track***Python, Segment Anything Model, LLMs, Pandas, Mapbox, Rasterio, Geopy, Folium*

- Led a team of four to develop a city-scale sustainability platform analyzing urban heat, vegetation, and water coverage across 50+ Phoenix ZIP codes using SAM segmentation, GIS processing, and remote-sensing analytics.
- Built end-to-end Python pipelines and interactive 3D GIS visualizations to compute environmental indices (NDVI, NDWI, LST) from satellite data, generating localized heat-mitigation strategies and infrastructure recommendations using an LLM.

TransformersNotFound - Creating an Open-Source GPT*Python, PyTorch, HuggingFace, Pandas, Accelerate, vLLM, FastAPI*

- Fine-tuned LLaMA-3.2B model using parameter-efficient LoRA adapters for reasoning tasks on a custom Chain-of-Thought dataset. Implemented multi-GPU distributed training and optimized model inference using HuggingFace Accelerate & vLLM.

Feal? Fake vs Real Image Binary Classifier*Python, PyTorch, Scikit-Learn, Matplotlib, Pandas*

- Achieved 97.3% accuracy in binary classification of real vs. AI-generated images by fine-tuning a ResNet-18 model with PyTorch on an augmented dataset enriched with 10,000+ synthetic images generated by a custom Deep Convolutional GAN.

Skills**Languages & Frameworks/Tools:** Python, PyTorch, Java, C, C++, R, JavaScript, SciPy/NumPy, SQL, MATLAB, Scikit-Learn, HuggingFace, Transformers, AWS, Docker, REST, OpenCV, Stable-Baselines3, Accelerate, vLLM, TensorRT, ONNX